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Abstract

The first- and second-order supersymmetry transformations are used to generate
Hamiltonians with known spectra departing from the trigonometric Pöschl–
Teller potentials. The several possibilities of manipulating the initial spectrum
are fully explored, and it is shown how to modify one or two levels, or even
to leave the spectrum unaffected. The behaviour of the new potentials at the
boundaries of the domain is studied.

PACS numbers: 03.65.Ge, 03.65.Fd, 03.65.Ca

1. Introduction

There is a growing interest nowadays in the design of systems whose Hamiltonians have
prescribed energy spectra, and the simplest technique to achieve this goal is to use
supersymmetric quantum mechanics (SUSY QM) [1]. In this procedure, departing from
an initial solvable Hamiltonian H a new solvable one, H̃ , can be constructed with a slightly
modified spectrum, by using a finite-order differential intertwining operator [2–27]. The
ingredients to implement these transformations are seed solutions of the initial stationary
Schrödinger equation associated with factorization energies which do not coincide in general
with the eigenvalues of H. By iterating appropriately this method as many times as needed,
one could construct Hamiltonians whose spectra are arbitrarily close to any desired one.

In the case that the intertwining operator is of first order the procedure can be implemented
by using as the seed one Schrödinger solution for which factorization energy is less than or
equal to the ground-state energy of H [2–16]. In order to surpass successfully this restriction,
one needs to use interwining operators of at least second order [17–27]. The resulting second-
order SUSY QM offers several interesting possibilities of spectral manipulation [15, 18, 19]:
(i) two new levels can be placed between a pair of neighbouring physical ones Ei−1, Ei of H;
(ii) one new energy can be created at an arbitrary position; (iii) one level can be moved;
(iv) there is not modification of the initial spectrum; (v) one physical energy can be deleted;
(vi) two neighbouring physical levels can be deleted.
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The SUSY techniques have been extensively applied to several interesting examples for
which the x-domain is the full real line (e.g. the harmonic oscillator) or the positive semi-axis
(e.g. the radial oscillator or the Coulomb problem). In order to complete the scheme, it is
important to apply them to cases where the x-domain is a finite interval, let us say [xl, xr ]. An
example of this kind, to be explored in detail in this paper, is the trigonometric Pöschl–Teller
potential [16, 27–29]. This is closely related to several potentials widely used in molecular
and solid state physics [28]. Since the SUSY transformations modify slightly the initial
spectrum, it turns out that a lot of new potentials are available to be used as models in physical
applications.

In the following section we will survey quickly the kth order SUSY QM, with special
emphasis placed on the first- and second-order cases [15]. In section 3, we will build up
the first- and second-order SUSY partners of the trigonometric Pöschl–Teller potential. In
section 4, we will finish the paper with our conclusions.

2. Supersymmetric quantum mechanics

The study of systems ruled by the supersymmetry algebra with two generators,

[Qi,Hss] = 0, {Qi,Qj } = δijHss, i, j = 1, 2, (2.1)

realized as

Q1 = Q + Q†
√

2
, Q2 = Q† − Q

i
√

2
, (2.2)

Q =
(

0 0
B 0

)
, Q† =

(
0 B†

0 0

)
, Hss =

(
B†B 0

0 BB†

)
, (2.3)

where B† is a kth order differential operator intertwining two Schrödinger Hamiltonians H, H̃

as

H̃B† = B†H, (2.4)

H = −1

2

d2

dx2
+ V (x), H̃ = −1

2

d2

dx2
+ Ṽ (x), (2.5)

is called kth order supersymmetric quantum mechanics. In this approach there is a relationship
between the supersymmetric ‘Hamiltonian’ Hss and the physical one H p = diag{H̃ ,H } of
polynomial type:

Hss =
k∏

i=1

(H p − εi). (2.6)

If one assumes that V (x) is a given solvable potential with normalized eigenfunctions ψn(x)

and eigenvalues En, n = 0, 1, . . ., equations (2.4) and (2.6) ensure that for any ψn(x) such
that B†ψn(x) �= 0 it turns out that

ψ̃n(x) = B†ψn(x)√
(En − ε1) · · · (En − εk)

(2.7)

is a normalized eigenfunction of H̃ with eigenvalue En. In general, the set {ψ̃n(x), n =
0, 1, . . .} is not complete, since there can exist eigenstates ψ̃εi

(x) of H̃ with eigenvalues εi

2



J. Phys. A: Math. Theor. 41 (2008) 475303 A Contreras-Astorga and D J Fernández C

belonging as well to the kernel of B. By adding them to the previous set, the maximal set of
eigenfunctions of H̃ is thus given by

{ψ̃εi
(x), ψ̃n(x), i = 1, . . . , k, n = 0, 1, . . .}. (2.8)

The corresponding eigenvalues are {εi, En, i = 1, . . . , k, n = 0, 1, . . .}.
In the maximal situation, the potential Ṽ (x) as well as the complete set of eigenfunctions

of H̃ are determined once the seed eigenfunctions ui(x) of H (which not necessarily are
physical) with eigenvalues εi, i = 1, . . . , k are supplied. In particular, Ṽ (x) reads

Ṽ (x) = V (x) − {ln[W(u1, . . . , uk)]}′′, (2.9)

W(u1, . . . , uk) denoting the Wronskian of the seeds u1(x), . . . , uk(x). Let us illustrate the
procedure more explicitly by means of the first- and second-order cases.

2.1. First-order supersymmetric quantum mechanics

Let us suppose that the intertwining operator is of first order

B† = 1√
2

[
− d

dx
+ α(x)

]
, (2.10)

where the superpotential α(x) is to be determined. The use of equation (2.4) leads to

Ṽ (x) = V (x) − α′(x), (2.11)

α′(x) + α2(x) = 2[V (x) − ε], (2.12)

i.e., α(x) must satisfy the Riccati equation (2.12). On the other hand, if a function u(x) such
that α(x) = [ln u(x)]′ is employed, equations (2.11) and (2.12) become

Ṽ (x) = V (x) − [ln u(x)]′′, (2.13)

Hu(x) = εu(x), (2.14)

namely, u(x) obeys the initial stationary Schrödinger equation associated with ε.
Let us take now a solution α(x) (or u(x)) to the Riccati (or Schrödinger) equation (2.12)

(or (2.14)) for a fixed factorization energy ε � E0, where E0 is the ground-state energy of H.
Thus, equations (2.11) and (2.13) indicate that the potential Ṽ (x) is determined completely,
with a maximal set of normalized eigenfunctions {ψ̃ε(x), ψ̃n(x)} given by

ψ̃ε(x) ∝ exp

[
−

∫ x

0
α(y) dy

]
= 1

u(x)
, ψ̃n(x) = B†ψn(x)√

En − ε
. (2.15)

The corresponding eigenvalues are {ε, En, n = 0, 1, . . .}. Let us point out that the aim of
the restriction ε � E0 is to avoid that singularities appear in α(x), Ṽ (x) and also in the
ψ̃ε(x), ψ̃n(x) of (2.15). Indeed, if ε > E0 the seed solution u(x) will always have nodes in
the x-domain of H and thus α(x) would have singularities at those points. If ε � E0, however,
u(x) can have at most one zero. In particular, there is a subset of nodeless u-functions in
the two-dimensional space of solutions associated with ε � E0, which will be used in the
following for implementing the non-singular first-order SUSY transformations.
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2.2. Second-order supersymmetric quantum mechanics

Now, let the intertwining operator be of second order

B† = 1

2

(
d2

dx2
− η(x)

d

dx
+ γ (x)

)
, (2.16)

where η(x), γ (x) are to be determined. Equation (2.4) leads to a set of equations relating
V (x), Ṽ (x), η(x), γ (x) and their derivatives which, after some calculations reduce to

Ṽ = V − η′, (2.17)

γ = η′

2
+

η2

2
− 2V + d, (2.18)

ηη′′

2
− η′2

4
+ η2η′ +

η4

4
− 2V η2 + dη2 + c = 0, (2.19)

with c, d ∈ R. For a given V (x), the new potential Ṽ (x) and γ (x) are obtained from (2.17)
and (2.18) once we find a solution η(x) of (2.19), which can be gotten from the ansatz

η′ = −η2 + 2βη + 2ξ. (2.20)

By plugging (2.20) into (2.19), after some calculations we get ξ 2 ≡ c and

β ′(x) + β2(x) = 2[V (x) − ε], ε = (d + ξ)/2, (2.21)

which is again a Riccati equation. We can work as well the related Schrödinger equation,
which arises by substituting into (2.21) β(x) = [ln u(x)]′:

−u′′

2
+ V u = εu. (2.22)

If c �= 0, ξ takes the values ±√
c, and in this way we need to solve the Riccati

equation (2.21) for two factorization energies ε1,2 = (d ± √
c)/2. Then one constructs

algebraically a common solution η(x) of the corresponding pair of equations (2.20). On the
other hand, if c = 0 one has to solve first the Riccati equation (2.21) for ε = d/2 and to
find after the general solution of the Bernoulli equation resulting for η(x) (see (2.20)). There
is a clear difference between the situation with real factorization constants (c > 0) and the
complex case (c < 0), suggesting to classify the solutions η(x) based on the sign of c, which
is next elaborated [30].

2.2.1. Real case (c > 0). Here we have ε1,2 ∈ R, ε1 �= ε2, the corresponding Riccati
solutions of (2.21) being denoted by β1,2(x). The resulting formula for η(x), expressed either
in terms of β1,2(x) or of the corresponding Schrödinger seed solutions u1,2(x) becomes

η(x) = − 2(ε1 − ε2)

β1(x) − β2(x)
= 2(ε1 − ε2)u1u2

W(u1, u2)
= W ′(u1, u2)

W(u1, u2)
, (2.23)

where W(f, g) = fg′ −gf ′ is the Wronskian of f and g. It is clear from equations (2.17) and
(2.23) that the new potential Ṽ (x) has no new singularities in (xl, xr) if W(u1, u2) is nodeless
there.

The spectrum of H̃ depends on whether or not its two ‘mathematical’ eigenfunctions ψ̃ε1,2

associated with ε1,2 which belong as well to the kernel of B can be normalized, namely

Bψ̃ε1,2 = 0, H̃ ψ̃ε1,2 = ε1,2ψ̃ε1,2 .

Their explicit expressions in terms of u1,2 are

ψ̃ε1 ∝ η

u1
∝ u2

W(u1, u2)
, ψ̃ε2 ∝ η

u2
∝ u1

W(u1, u2)
. (2.24)
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If both of them can be normalized, we then arrive at the maximal set of eigenfunctions of H̃ :{
ψ̃ε1 , ψ̃ε2 , ψ̃n = B†ψn√

(En − ε1)(En − ε2)

}
. (2.25)

Among the several spectral modifications which can be achieved through the real second-
order SUSY QM, some cases are worth mentioning [15, 18].

(a) Deleting two neighbour levels. For ε2 = Ei−1, ε1 = Ei, u2 = ψi−1, u1 = ψi , it
turns out that the Wronskian is nodeless and ψ̃ε1 , ψ̃ε2 are non-normalizable. Thus,
Sp(H̃ ) = {E0, . . . , Ei−2, Ei+1, . . .}, i.e., the levels Ei−1, Ei were ‘deleted’ for generating
Ṽ (x).

(b) Creating two new levels. For Ei−1 < ε2 < ε1 < Ei, i = 1, 2, . . ., by taking u2, u1 with
i + 1, i nodes respectively the Wronskian becomes nodeless, ψ̃ε1 , ψ̃ε2 are normalizable
and Sp(H̃ ) = {E0, . . . , Ei−1, ε2, ε1, Ei, . . .}.

(c) Isospectral transformations. They appear as a limit of the case in which two new levels are
created for Ei−1 < ε2 < ε1 < Ei , when u1,2 satisfy either u1,2(xl) = 0 or u1,2(xr) = 0.
In this case the Wronskian vanishes at xl or xr , and ψ̃ε1 , ψ̃ε2 cease to be normalizable so
that Sp(H̃ ) = Sp(H).

2.2.2. Complex case (c < 0) [31]. Now ε ≡ ε1 ∈ C, ε2 = ε̄, and since we look for Ṽ (x)

real, it must be taken β(x) ≡ β1 = β̄2(x). Hence, the real solution η(x) of equation (2.19)
generated from the complex one β(x) of (2.21) becomes

η(x) = − 2Im(ε)

Im[β(x)]
= w′(x)

w(x)
, w(x) = W(u, ū)

2(ε − ε̄)
. (2.26)

Note that w(x) must be nodeless for x ∈ (xl, xr) to avoid new singularities in Ṽ (x). Since
w(x) is non-decreasing monotonic (w′(x) = |u(x)|2), a sufficient condition ensuring the lack
of zeros is

lim
x→xl

u(x) = 0 or lim
x→xr

u(x) = 0. (2.27)

For transformation functions obeying (2.27), Ṽ (x) is a real potential isospectral to V (x).

2.2.3. Confluent case (c = 0) [32, 33]. We get now ξ = 0, ε ≡ ε1 = ε2 ∈ R; let us take a
Riccati solution β(x) to (2.21) for the given ε. Thus, the general solution for the Bernoulli
equation resulting of (2.20) reads

η(x) = e2
∫

β(x) dx

w̃0 +
∫

e2
∫

β(x) dx dx
= w′(x)

w(x)
, (2.28)

w(x) = w̃0 +
∫

e2
∫

β(x) dx dx = w0 +
∫ x

x0

[u(y)]2 dy, (2.29)

where x0 is a fixed point in [xl, xr ]. Once again, w(x) must be nodeless in order that Ṽ (x) has
no singularities in (xl, xr). Since w(x) is non-decreasing monotonic (w′(x) = [u(x)]2), the
simplest choice ensuring a nodeless w(x) is to take u(x) satisfying either

lim
x→xl

u(x) = 0, I− =
∫ x0

xl

[u(y)]2 dy < ∞ (2.30)

or

lim
x→xr

u(x) = 0, I+ =
∫ xr

x0

[u(y)]2 dy < ∞. (2.31)

5
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In both cases it is possible to find a w0-domain for which w(x) is nodeless. The spectrum of
H̃ depends on the normalizability of the eigenfunction ψ̃ε of H̃ associated with ε belonging
as well to the kernel of B, with explicit expression given by

ψ̃ε(x) ∝ η(x)

u(x)
∝ u(x)

w(x)
.

If it can be normalized, then the maximal set of eigenfunctions of H̃ becomes{
ψ̃ε(x), ψ̃n(x) = B†ψn(x)

En − ε

}
. (2.32)

Note that, for ε > E0, ε �= Em,m = 1, 2, . . . there exist solutions u satisfying (2.30) or (2.31)
such that ψ̃ε is normalizable, i.e., the confluent second-order SUSY QM allows to embed
a single level above the ground state of H. Moreover, since the physical eigenfunctions of
H satisfy both (2.30) and (2.31), they are also appropriate for implementing the confluent
algorithm. Let us remark that, apparently, the first authors who realized that through the
confluent SUSY QM it is possible to modify the excited part of the spectrum were Baye and
collaborators [34, 35]. We thank one of the referees of this paper for this information.

3. Trigonometric Pöschl–Teller potentials and their SUSY partners

Let us apply the previous techniques to the trigonometric Pöschl–Teller potentials
[16, 27, 29]:

V (x) = (λ − 1)λ

2 sin2(x)
+

(ν − 1)ν

2 cos2(x)
, λ, ν > 1. (3.1)

Note that, for 1/2 < λ = ν < 1, the V (x) of (3.1) is known as Scarf potential [9, 28]. The
SUSY transformations for that periodic potential have been recently implemented [24].

Along the paper the general solution of the Schrödinger equation Hu(x) = εu(x) for any
positive value of the energy parameter ε will be extensively used, which reads

u(x) = sinλ(x) cosν(x)

{
A2F1

[
μ

2
+

√
ε

2
,
μ

2
−

√
ε

2
; λ +

1

2
; sin2(x)

]
+ B sin1−2λ(x)2F1

[
1 + ν − λ

2
+

√
ε

2
,

1 + ν − λ

2
−

√
ε

2
; 3

2
− λ; sin2(x)

] }
,

(3.2)

where μ = λ + ν. We can find now the eigenfunctions ψn(x) of H, which satisfy the boundary
conditions ψn(0) = ψn(π/2) = 0. Since ψn(0) = 0, it turns out that B = 0. Moreover,
for arbitrary ε > 0 the hypergeometric function involved in the remaining term diverges
when x → π/2 stronger than the vanishing behaviour induced by cosν(x). In order to avoid
this divergence so that ψn(π/2) = 0, one of the two first parameters of the corresponding
hypergeometric function has to be a negative integer, namely:

μ

2
±

√
En

2
= −n ⇒ En = (μ + 2n)2

2
, n = 0, 1, 2, . . . (3.3)

By using the normalization condition it turns out that the eigenfunctions of H are

ψn(x)=
√√√√ 2(μ+2n)n!(μ+n)

(
λ+ 1

2

)
n(

ν + 1
2

)
n


(
λ + 1

2

)
3

(
ν + 1

2

) sinλ(x) cosν(x)2F1[−n, n+μ; λ+
1

2
; sin2(x)]. (3.4)
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For implementing later the SUSY transformations, it is important to know the number of
zeros of the Schrödinger seed solution which is going to be employed. These nodes depend on
ε,A,B (see expression (3.2)). To determine that dependence, let us compare the asymptotic
behaviour of u(x) for x → 0, π/2. Indeed:

u(x) ∼
x→0

B sin1−λ(x), u(x) ∼
x→ π

2

(Aa + Bb) cos1−ν(x), (3.5)

a = 
(
λ + 1

2

)


(
ν − 1

2

)


(
μ

2 +
√

ε
2

)


(
μ

2 − √
ε
2

) , b = 
(

3
2 − λ

)


(
ν − 1

2

)


(
1+ν−λ

2 +
√

ε
2

)


(
1+ν−λ

2 − √
ε
2

) .

By asking that u(x) > 0 when x ∼ 0, it turns out that B > 0. Without loosing generality
let us take B = 1 and A = −b/a + q. Since for ε < E0 u(x) just can have either one or
zero nodes in (0, π/2), thus it will have one if q < 0 while it will be nodeless if q > 0. For
E0 < ε < E1, u(x) will have either two zeros for q < 0 or just one for q > 0. In general, for
Ei−1 < ε < Ei, u(x) will have either i + 1 nodes for q < 0 or i ones for q > 0.

Note that the trigonometric Pöschl–Teller potentials, and the corresponding Hamiltonians,
are invariant under the transformation x → π/2 − x, λ → ν, ν → λ. Its action onto the
Schrödinger solution (3.2), with a given ε and specific values of the parameters (A,B),
produces another solution with different parameters (Aα1 + Bβ1, Aα2 + Bβ2), where

α1 = −
(

2ν − 1

2λ − 1

)
b, α2 =

(
2ν − 1

2λ − 1

)
a,

β1 = 
(

1
2 − λ

)


(
3
2 − ν

)


(
1 − μ

2 +
√

ε
2

)


(
1 − μ

2 − √
ε
2

) , β2 = 
(
λ − 1

2

)


(
3
2 − ν

)


(
1+λ−ν

2 +
√

ε
2

)


(
1+λ−ν

2 − √
ε
2

) .

This result will be used below to diminish the number of discussed SUSY transformations.

3.1. First-order SUSY partners

Let us classify the first-order SUSY partners according to the changes induced on the initial
spectrum. Three different cases have been identified [16].

(a) Deleting the initial ground state. Let us choose ε = E0 and as seed the ground-state
eigenfunction of H,

u(x) = ψ0(x) ∝ sinλ(x) cosν(x). (3.6)

The SUSY partner potential of V (x) becomes

Ṽ (x) = λ(λ + 1)

2 sin2(x)
+

ν(ν + 1)

2 cos2(x)
, λ, ν > 1. (3.7)

Since ψ̃ε(x) ∝ 1/ψ0(x) diverges at x = 0, π/2, the eigenvalues of H̃ are given by (3.3)
just with n = 1, 2, . . ., i.e., we have ‘deleted’ the ground-state energy of H to generate
Ṽ (x).
The previous SUSY partner potential Ṽ (x) can be obtained of the initial one through the
change λ → λ + 1, ν → ν + 1, a property which is nowadays called shape invariance
[9]. The fact that the singularities at x = 0, π/2 are reinforced, increasing by one both
parameters λ, ν, has to do with the vanishing at those points of the employed seed solution.
This behaviour is identical to that observed at the origin for the singular term of the SUSY
partners of effective radial potentials [6].
As an illustration, the potentials Ṽ (x) and V (x) for λ = 3, ν = 4 are drawn in dashed
and in gray respectively in figure 1.

7
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Figure 1. Trigonometric Pöschl–Teller potential for λ = 3, ν = 4 (gray curve) and its first-order
SUSY partners which arise from deleting the initial ground state E0 = 24.5 (dashed curve), creating
a new ground state at ε = 19 (black continuous curve) and making an isospectral transformation
with the same ε (dotted curve).

(b) Creating a new ground state. Let us take now ε < E0 and a nodeless seed solution u(x)

given by (3.2) with B = 1, A = −b/a + q, q > 0. Since u(x) → ∞ as x → 0, π/2,
then ψ̃ε(0) = ψ̃ε(π/2) = 0, i.e., ψ̃ε(x) is a new eigenfunction of H̃ with eigenvalue ε.
Note that Sp(H̃ ) = {ε, En, n = 0, 1, . . .}, namely, a new level has been ‘created’ at ε for
H̃ . The singularities induced by u(x) on Ṽ (x) at x = 0, π/2 are managed by defining

u(x) = sin1−λ(x) cos1−ν(x)v(x), (3.8)

where v(x) is a nodeless bounded function in [0, π/2]. Thus we get

Ṽ (x) = (λ − 2)(λ − 1)

2 sin2(x)
+

(ν − 2)(ν − 1)

2 cos2(x)
− [ln v(x)]′′, λ, ν > 2. (3.9)

Note that now the singularities at x = 0, π/2 are weakened, decreasing by one both
parameters λ, ν. This is due to the divergence at both points of the employed seed
solution, which once again is similar to the behaviour at the origin for the singular term
of the SUSY partners of effective radial potentials [3, 6, 10].
An example of the potential (3.9) for λ = 3, ν = 4 is given by the black continuous curve
of figure 1.

(c) Isospectral potentials. They appear from the transformations creating a new level at
ε < E0 in the limit when u(x) vanishes at one of the ends of the x-domain so that ψ̃ε(x)

is not longer an eigenstate of H̃ . In our example, two appropriate seeds are available,
given by (3.2) with A = 1, B = 0 or A = −b/a, B = 1. In the first case u(0) = 0, and
the corresponding divergence induced on Ṽ (x) can be handled by taking:

u(x) = sinλ(x) cos1−ν(x)v(x), (3.10)

v(x) being nodeless bounded in [0, π/2]. With this choice it turns out that

Ṽ (x) = λ(λ + 1)

2 sin2(x)
+

(ν − 2)(ν − 1)

2 cos2(x)
− [ln v(x)]′′, λ > 1, ν > 2. (3.11)

8
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Since |ψ̃ε(x)| → ∞ when x → 0, then ε �∈ Sp(H̃ ) and therefore H̃ is isospectral to H.
Note the opposite changes of λ, ν suffered by the SUSY partner potentials Ṽ (x): the
parameter λ (ν) is increased (decreased) by one since the seed solution vanishes (diverges)
at x = 0 (x = π/2). Once again this is similar to the modifications induced by SUSY on
the term singular at the origin of effective radial potentials [3, 6, 10].
The potential (3.11) for λ = 3, ν = 4 is illustrated by the dotted curve of figure 1. On the
other hand, the second seed solution which satisfies u(π/2) = 0 is obtained by changing
x → π/2 − x, λ → ν, ν → λ in (3.10). The corresponding isospectral SUSY partner
potential arises from the same transformation applied to (3.11).

3.2. Second-order SUSY partners

Let us explore the spectral modifications which can be induced in the three cases of the
classification of section 2 (a partial study is found in [29]). Our results suggest a rule which
will be observed for the changes induced on the parameters λ, ν characterizing the singularities
at x = 0, π/2 in the real and complex cases: if both seeds vanish (diverge) at x = 0, then each
one will increase (decrease) by one the parameter λ so that at the end the coefficient of the
divergent term of Ṽ (x) is obtained by making λ → λ + 2 (λ → λ − 2). On the other hand, if
one solution vanishes while the other one diverges at x = 0, then the corresponding singular
term of Ṽ (x) will be the same as for V (x) (unchanged λ). Something similar happens for
the parameter ν characterizing the singularity at x = π/2. This behaviour is also seen for the
singularity at the origin of the SUSY partners of effective radial potentials [6].

3.2.1. Real case. For ε1,2 ∈ R several possibilities of modifying Sp(H) are available.

(a) Deleting two neighbour levels. Let us take ε1 = Ei, ε2 = Ei−1, u1(x) = ψi(x), u2(x) =
ψi−1(x) (see equation (3.4)). It is straightforward to show that

W(u1, u2) ∝ sin2λ+1(x) cos2ν+1(x)W, (3.12)

where

W = W
{

2F1
[ − i, i + μ; λ + 1

2 ; sin2(x)
]
, 2F1

[ − i + 1, i − 1 + μ; λ + 1
2 ; sin2(x)

]}
sin(x) cos(x)

(3.13)

is a nodeless bounded function in [0, π/2]. The second-order SUSY partners of V (x)

become

Ṽ (x) = (λ + 1)(λ + 2)

2 sin2(x)
+

(ν + 1)(ν + 2)

2 cos2(x)
− (lnW)′′, λ, ν > 1. (3.14)

The two mathematical eigenfunctions ψ̃ε1 ∝ u2/W(u1, u2), ψ̃ε2 ∝ u1/W(u1, u2) of H̃

associated with ε1 = Ei, ε2 = Ei−1 do not obey anymore the boundary conditions to be
physical eigenfunctions of H̃ since

lim
x→0, π

2

|ψ̃ε1,2(x)| = ∞.

Thus, Sp(H̃ ) = {E0, . . . Ei−2, Ei+1, . . .}.
A plot of the potential (3.14) for λ = 5, ν = 8, generated by deleting the levels
E2 = 144.5, E3 = 180.5, is shown in dashed in figure 2, while the initial one is drawn in
gray. Note the stronger intensities of the singularities at x = 0, π/2 of Ṽ (x) with respect
to the corresponding ones of V (x) (compare the potentials (3.1) and (3.14)).

9
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Figure 2. Trigonometric Pöschl–Teller potential for λ = 5, ν = 8 (gray curve) and its second-order
SUSY partners (real case) which arise by deleting the levels E2 = 144.5, E3 = 180.5 (dashed
curve), creating two new eigenvalues at ε1 = 128, ε2 = 115.52 (black continuous curve), and
moving the energy E2 = 144.5 up to ε1 = 169.28 (dotted curve).

(b) Creating two new levels. Let us choose now Ei−1 < ε2 < ε1 < Ei , and the corresponding
seed solutions as given by (3.2) with B1,2 = 1, A1,2 = −b1,2/a1,2 + q1,2, q2 < 0, q1 > 0,
i.e., u2 and u1 have i + 1 and i nodes respectively, making the Wronskian nodeless. In
order to include the case when ε2 < ε1 < E0, let us assume that i = 0, 1, 2, . . ., where
we have introduced the formal fictitious level E−1 ≡ −∞. It is important to ‘isolate’ the
divergent behaviour of the u solutions for x → 0 and x → π/2 (see equation (3.5)) by
taking

u1,2(x) = sin1−λ(x) cos1−ν(x)v1,2(x), (3.15)

v1,2(x) being bounded for x ∈ [0, π/2], v1,2(0) �= 0, v1,2(π/2) �= 0. Since the second
term in the Taylor series expansion of v1,2(x) is proportional to sin2(x), it turns out that
v′

1,2(x) tend to zero as sin(x) for x → 0 and as cos(x) for x → π/2. A simple calculation
leads to

W(u1, u2) = sin3−2λ(x) cos3−2ν(x)W, (3.16)

whereW = W(v1, v2)/[sin(x) cos(x)] is nodeless bounded in [0, π/2]. The second-order
SUSY partners of the Pöschl–Teller potential (3.1) are now:

Ṽ (x)= (λ − 3)(λ − 2)

2 sin2(x)
+

(ν − 3)(ν − 2)

2 cos2(x)
− (lnW)′′, λ, ν > 3. (3.17)

Since

lim
x→0, π

2

ψ̃ε1,2(x) = 0,

then Sp(H̃ ) = {E0, . . . , Ei−1, ε2, ε1, Ei, . . .}, i.e., two new levels have been created
between a pair of neighbour ones of H to generate Ṽ (x).
A plot of the potentials (3.17) for λ = 5, ν = 8, generated by creating the two new levels
ε1 = 128, ε2 = 115.52, is given by the black continuous curve of figure 2. Observe the

10
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weaker intensities of the singularities at x = 0, π/2 of Ṽ (x) compared with those of the
initial potential (3.1).

(c) Isospectral transformations. They arise from those which create two new levels (see case
(b)) in the limit when each seed vanishes at one of the ends of the x-domain. By simplicity,
let us choose u1,2 as given in (3.2) with B1,2 = 0, A1,2 = 1 so that u1,2(0) = 0. Since
|u1,2(x)| → ∞ when x → π/2, it is convenient to express:

u1,2(x) = sinλ(x) cos1−ν(x)v1,2(x), (3.18)

v1,2(x) being bounded in [0, π/2], v1,2(0) �= 0, v1,2(π/2) �= 0. Once again, it turns out
that:

W(u1, u2) = sin2λ+1(x) cos3−2ν(x)W, (3.19)

whereW = W(v1, v2)/[sin(x) cos(x)] is nodeless bounded in [0, π/2]. The second-order
SUSY partners of the Pöschl–Teller potential are now

Ṽ (x) = (λ + 1)(λ + 2)

2 sin2(x)
+

(ν − 3)(ν − 2)

2 cos2(x)
− (lnW)′′, λ > 1, ν > 3. (3.20)

Note that

lim
x→0

|ψ̃ε1,2(x)| = ∞, lim
x→ π

2

ψ̃ε1,2(x) = 0.

This implies that ε1,2 �∈ Sp(H̃ ), meaning that Ṽ (x) is strictly isospectral to V (x).
Note that a similar procedure for u1,2 satisfying u1,2(π/2) = 0 can be applied. The
corresponding seed solutions and isospectral SUSY partner potentials are obtained by
changing x → π/2 − x, λ → ν, ν → λ in equations (3.18)–(3.20).

(d) Creating a new level. It appears from case (b) when one of the i+1 nodes of u2 goes either to
0 or to π/2. In the first case it is taken B2 = 0, A2 = 1, B1 = 1, A1 = −b1/a1+q1, q1 > 0,
so that u2(0) = 0. In order to manage the singularity at x = π/2 induced by u1,2 on
Ṽ (x), it is convenient to write them as:

u1(x) = sin1−λ(x) cos1−ν(x)v1(x), u2(x) = sinλ(x) cos1−ν(x)v2(x), (3.21)

v1,2(x) being bounded in [0, π/2], v1,2(0) �= 0, v1,2(π/2) �= 0. It can be shown that

W(u1, u2) = cos3−2ν(x)W, (3.22)

where W = W [sin1−λ(x)v1(x), sinλ(x)v2(x)]/ cos(x) is nodeless bounded for x ∈
[0, π/2]. The second-order SUSY partner potentials of V (x) are

Ṽ (x) = (λ − 1)λ

2 sin2(x)
+

(ν − 3)(ν − 2)

2 cos2(x)
− (lnW)′′, λ > 1, ν > 3. (3.23)

Since

lim
x→0, π

2

ψ̃ε1(x) = lim
x→ π

2

ψ̃ε2(x) = 0, lim
x→0

|ψ̃ε2(x)| = ∞,

thus Sp(H̃ ) = {E0, . . . , Ei−1, ε1, Ei, . . .}, i.e., we have embedded a new level ε1 in
(Ei−1, Ei).
The second possibility for generating a new level, in which u2(π/2) = 0, can be obtained
through the changes x → π/2 − x, λ → ν, ν → λ in formulae (3.21)–(3.23).

11
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(e) Moving an arbitrary level. This can be achieved in the first place by taking the factorization
energies as Ei−1 = ε2 < ε1 < Ei and the seeds in the way u2(x) = ψi−1(x), u1(x) as
given in (3.2) with B1 = 1, A1 = −b1/a1 + q1, q1 > 0 so that u1(x) has i nodes in
(0, π/2). It is convenient to factorize the null and divergent behaviour of the seed
solutions u1,2(x) at x = 0, π/2 by expressing them as:

u1(x) = sin1−λ(x) cos1−ν(x)v1(x), u2(x) = sinλ(x) cosν(x)v2(x), (3.24)

where v1,2(x) are two bounded functions for x ∈ [0, π/2], v1,2(0) �= 0, v1,2(π/2) �= 0. It
turns out that W(u1, u2) is nodeless bounded for x ∈ [0, π/2]. Moreover:

lim
x→0, π

2

ψ̃ε1(x) = 0, lim
x→0, π

2

|ψ̃ε2(x)| = ∞,

i.e., ψ̃ε1(x) is an eigenfunction of H̃ but ψ̃ε2(x) is not. The second-order SUSY partners
of V (x) are given by

Ṽ (x) = (λ − 1)λ

2 sin2(x)
+

(ν − 1)ν

2 cos2(x)
− {ln[W(u1, u2)]}′′, λ, ν > 1. (3.25)

Since Sp(H̃ ) = {E0, . . . , Ei−2, ε1, Ei, . . .}, we conclude that the level Ei−1 has been
moved up to achieve ε1.
An example of the potentials (3.25) for λ = 5, ν = 8 is plotted in figure 2 (dotted curve).
The initial level E2 = 144.5 has been moved up to achieve ε1 = 169.28. The ‘intensities’
of the singularities at x = 0, π/2 for Ṽ (x) remain the same as for the initial potential
(3.1).
Another possibility is to take Ei−1 < ε2 < ε1 = Ei , the corresponding seed solutions in
the way u1(x) = ψi(x), the u2(x) of (3.2) with A2 = −b2/a2 + q2, q2 < 0, i.e., u1(x)

and u2(x) have i and i + 1 nodes respectively for x ∈ (0, π/2). It is convenient to express

u1(x) = sinλ(x) cosν(x)v1(x), u2(x) = sin1−λ(x) cos1−ν(x)v2(x), (3.26)

v1,2(x) being bounded for x ∈ [0, π/2], v1,2(0) �= 0, v1,2(π/2) �= 0. Once again,
W(u1, u2) is nodeless bounded for x ∈ [0, π/2]. Furthermore:

lim
x→0, π

2

|ψ̃ε1(x)| = ∞, lim
x→0, π

2

ψ̃ε2(x) = 0,

namely, ψ̃ε2(x) is an eigenfunction of H̃ while ψ̃ε1(x) is not. The SUSY partner of V (x)

is given as well by (3.25), where now Sp(H̃ ) = {E0, . . . , Ei−1, ε2, Ei+1, . . .}, meaning
that the level Ei has been moved down to achieve ε2.

(f) Deleting an arbitrary level. This is attained of the previous case in the limit when the
nonphysical seed acquires one zero at x = 0 or x = π/2. For Ei−1 = ε2 < ε1 < Ei one
possibility is to take u2(x) = ψi−1(x), u1(x) as in (3.2) with A1 = 1, B1 = 0, so that
u1(0) = 0. Thus

u1(x) = sinλ(x) cos1−ν(x)v1(x), u2(x) = sinλ(x) cosν(x)v2(x), (3.27)

v1,2(x) being bounded for x ∈ [0, π/2], v1,2(0) �= 0, v1,2(π/2) �= 0. It turns out that

W(u1, u2) = sin2λ+1(x)W, (3.28)

where W = W [cos1−ν(x)v1(x), cosν(x)v2(x)]/ sin(x) is nodeless bounded for x ∈
[0, π/2]. Now we have

lim
x→ π

2

ψ̃ε1(x) = 0, lim
x→0

|ψ̃ε1(x)| = lim
x→0, π

2

|ψ̃ε2(x)| = ∞,

12
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Figure 3. Trigonometric Pöschl–Teller potential for λ = 5, ν = 8 (gray curve) and its second-
order SUSY partner (complex case) which arises by using ε = 176.344 + 1.5i with a seed vanishing
at the origin (dotted curve).

i.e., ε1,2 �∈ Sp(H̃ ) = {E0, . . . , Ei−2, Ei, Ei+1, . . .}. The SUSY partner potentials of V (x)

are given by

Ṽ (x) = (λ + 1)(λ + 2)

2 sin2(x)
+

(ν − 1)ν

2 cos2(x)
− (lnW)′′, λ, ν > 1. (3.29)

It is seen that the level Ei−1 has been deleted for generating Ṽ (x).
Another option for deleting the level Ei−1 can be achieved by changing x → π/2−x, λ →
ν, ν → λ in equations (3.27)–(3.29).

3.2.2. Complex case. For ε ∈ C the solution u given in (3.2) is still valid, and the condition
(2.27) required to avoid the zeros in the Wronskian can be accomplished in two ways. In the
first place we make A = 1, B = 0 and thus u(0) = 0 while |u(x)| → ∞ as x → π/2. The
singularities induced on Ṽ (x) are handled by factorizing

u(x) = sinλ(x) cos1−ν(x)v(x). (3.30)

Therefore:

W(u, ū) = sin2λ+1(x) cos3−2ν(x)W, (3.31)

Ṽ (x) = (λ + 1)(λ + 2)

2 sin2(x)
+

(ν − 3)(ν − 2)

2 cos2(x)
− (lnW)′′, λ > 1, ν > 3,

W = W(v, v̄)

2(ε − ε̄) sin(x) cos(x)
.

(3.32)

The potentials Ṽ (x) of (3.32) and the Pöschl–Teller initial one (3.1) are isospectral. Their
plots for λ = 5, ν = 8 are shown in figure 3, where the initial potential is drawn in gray while
the dotted curve represents that of (3.32).

13



J. Phys. A: Math. Theor. 41 (2008) 475303 A Contreras-Astorga and D J Fernández C

Note that the second solution satisfying u(π/2) = 0, limx→0 |u(x)| → ∞, and the
corresponding SUSY partner potential Ṽ (x), are obtained by changing x → π/2 − x, λ →
ν, ν → λ in equations (3.30)–(3.32).

3.2.3. Confluent case. For ε = ε1 = ε2, several possibilities of modifying the initial
spectrum appear.

(a) Creating a new level. Let us choose R � ε �= Ei , for which two seeds are available for
implementing the confluent algorithm. The first one arises by taking A = 1, B = 0 in
(3.2):

u(x)=sinλ(x) cosν(x)2F1

(
μ

2
+

√
ε

2
,
μ

2
−

√
ε

2
; λ+

1

2
; sin2(x)

)
=sinλ(x) cos1−ν(x)v(x),

(3.33)

v(x) being bounded for x ∈ [0, π/2], v(0) �= 0, v(π/2) �= 0. The calculation of the
integral of equation (2.29) with x0 = 0 leads to

w(x) = w0 +
∞∑

m=0

(
μ

2 +
√

ε
2

)
m

(
μ

2 − √
ε
2

)
m

sin2λ+2m+1(x)(
λ + 1

2

)
m
m!(2λ + 2m + 1)

× 3F2

(
1+λ−ν

2
−

√
ε

2
,

1+λ−ν

2
+

√
ε

2
, λ+m+

1

2
; λ+

1

2
, λ+m+

3

2
; sin2(x)

)
.

(3.34)

Note that w(x) is nodeless in [0, π/2] for w0 > 0 while it will have one node for w0 < 0.
Let us choose a nodeless w(x), as given in (3.34) with w0 > 0. Its divergent behaviour
for x → π/2, being of kind cos3−2ν(x), will change the coefficient of the second term of
the Pöschl–Teller potential (3.1), so it is convenient to factorize

w(x) = cos3−2ν(x)W(x), (3.35)

W(x) being nodeless bounded for x ∈ [0, π/2]. The confluent second-order SUSY
partner potentials of V (x) become

Ṽ (x) = (λ − 1)λ

2 sin2(x)
+

(ν − 3)(ν − 2)

2 cos2(x)
− {ln[W(x)]}′′, λ > 1, ν > 3. (3.36)

Since ψ̃ε(x) ∝ u(x)/w(x) satisfies

lim
x→0, π

2

ψ̃ε(x) = 0, (3.37)

then Sp(H̃ ) = {ε, En, n = 0, 1, . . .}, ε �= En.
As an illustration, in figure 4 we have drawn in gray the initial potential for λ = 5, ν = 8
and its SUSY partner (3.36) by the black continuous curve. The different intensities of
the singularities for both potentials at x = π/2 are seen.
Note that the second seed, which is appropriate to implement the confluent algorithm, and
the corresponding SUSY partner potential, are obtained by changing x → π/2 − x, λ →
ν, ν → λ in equations (3.33)–(3.36).

(b) Isospectral transformations. They appear in several different ways, in the first place as
two limits of the previous case when the eigenfunction of H̃ associated with ε ceases to
satisfy the right boundary conditions. This happens, e.g., if we take u(x) as in (3.33) and
the w(x) of (3.34) with w0 = 0. Besides the divergent behaviour of w(x) as x → π/2, it
turns out that w(x) → 0 as sin2λ+1(x) when x → 0, so that

w(x) = sin2λ+1(x) cos3−2ν(x)W(x), (3.38)
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Figure 4. Trigonometric Pöschl–Teller potential for λ = 5, ν = 8 (gray curve) and its second-
order SUSY partners (confluent case) which arise from creating a new level at ε = 147.92 (black
continuous curve), making an isospectral transformation with ε = 162 (dotted curve) and deleting
the eigenvalue E3 = 180.5 (dashed curve).

W(x) being nodeless bounded for x ∈ [0, π/2]. The SUSY partner potential of V (x) is

Ṽ (x) = (λ + 1)(λ + 2)

2 sin2(x)
+

(ν − 3)(ν − 2)

2 cos2(x)
− {ln[W(x)]}′′, λ > 1, ν > 3.

(3.39)

Note that:

lim
x→0

|ψ̃ε(x)| = ∞, lim
x→ π

2

ψ̃ε(x) = 0, (3.40)

i.e., ε �∈ Sp(H̃ ) and therefore H̃ has the same spectrum as H.
An example of the potentials (3.39) for λ = 5, ν = 8, ε = 162 is shown in dotted in
figure 4. It can be seen that the stronger intensity of the singularity at x = 0 of Ṽ (x),
compared with V (x), is ‘compensated’ by its lower value at x = π/2.
A second alternative to produce isospectral potentials consists in changing x →
π/2 − x, λ → ν, ν → λ in equations (3.33)–(3.36) and taking w0 = 0 in the
resulting formulae. The corresponding SUSY partner potential is obtained by substituting
x → π/2 − x, λ → ν, ν → λ into equations (3.38) and (3.39).
The third confluent isospectral transformation uses as seed physical eigenfunctions of H,
i.e., ε = Ei, u(x) = ψi(x). The expression for w(x) is obtained from (3.34) by realizing
that the solution (3.33) is proportional to the eigenfunction (3.4) when ε → Ei ,

ψi = ci lim
ε→Ei

sinλ(x) cosν(x)2F1

(
μ

2
+

√
ε

2
,
μ

2
−

√
ε

2
; λ +

1

2
; sin2(x)

)
,

ci =
[

2(μ + 2i)i!(μ + i)
(
λ + 1

2

)
i(

ν + 1
2

)
i


(
λ + 1

2

)
3

(
ν + 1

2

) ] 1
2

.

(3.41)
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Moreover, in this limit the infinite summation of (3.34) truncates at m = i, so that:

w(x) = w0 + c2
i

i∑
m=0

(μ + i)m(−i)m sin2λ+2m+1(x)(
λ + 1

2

)
m
m!(2λ + 2m + 1)

× 3F2

(
1

2
− ν − i,

1

2
+ λ + i, λ + m +

1

2
; λ +

1

2
, λ + m +

3

2
; sin2(x)

)
.

(3.42)

If w0 > 0 or w0 < −1, w(x) is nodeless bounded for x ∈ [0, π/2]. Now there is no
change in the intensities of the singularities at x = 0, π/2 for Ṽ (x), namely:

Ṽ (x) = (λ − 1)λ

2 sin2(x)
+

(ν − 1)ν

2 cos2(x)
− {ln[w(x)]}′′, λ, ν > 1. (3.43)

It turns out that

lim
x→0, π

2

ψ̃ε(x) = 0, (3.44)

i.e., ε = Ei ∈ Sp(H̃ ) and thus H and H̃ are isospectral.
(c) Deleting an arbitrary level. This case appears in the limits as w0 → 0,−1 of the

isospectral transformations involving as seed the physical eigenfunction ψi(x). For
w0 → 0, w(x) ∼ sin2λ+1(x) when x → 0 so that:

w(x) = sin2λ+1(x)W(x), (3.45)

where W(x) is nodeless bounded in [0, π/2]. Since

lim
x→0

|ψ̃ε(x)| = ∞, lim
x→ π

2

ψ̃ε(x) = 0, (3.46)

then ε = Ei �∈ Sp(H̃ ) = {E0, . . . , Ei−1, Ei+1, . . .}. The SUSY partner potential of V (x)

is

Ṽ (x) = (λ + 1)(λ + 2)

2 sin2(x)
+

(ν − 1)ν

2 cos2(x)
− {ln[W(x)]}′′, λ, ν > 1. (3.47)

It is seen that we have deleted the level Ei to produce Ṽ (x).
An illustration of the potentials (3.47) for λ = 5, ν = 8 is shown in dashed in figure 4.
The deleted level is E3 = 180.5, and the intensities of V (x) and Ṽ (x) at x = 0 differ as
predicted by equations (3.1) and (3.47).
The case when w0 → −1, which also leads to the deletion of the level Ei , can be achieved
from equations (3.45) and (3.47) by the change x → π/2 − x, λ → ν, ν → λ.

4. Conclusions

The supersymmetric quantum mechanics of first and second order have been used to generate
new exactly solvable Hamiltonians departing from the trigonometric Pöschl–Teller potentials.
Several interesting possibilities to modify the initial spectrum have been studied, and it has
been shown that the deformations induced by the second-order algorithm can be non-standard,
in the sense that the main spectral changes appear above the ground-state energy of the initial
Hamiltonian. Specifically, we have shown that a pair of levels can be embedded between two
neighbour initial ones. It has also been possible to delete two neighbour energies. Specially
interesting is the possibility of embedding a single level at any arbitrary position. In addition,
it is possible to move up or down a generic physical energy as well as to delete it. It
is worth noting that some spectral modification can be achieved in several different ways.
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For example, the strictly isospectral mappings can be obtained through the real, complex
and confluent second-order transformations (see the potentials in (3.20), (3.32), (3.39) and
(3.43)). However, if we want to produce an isospectral potential such that the coefficients of
the singularities at x = 0, π/2 would be changed in a specific way, then the number of options
becomes smaller. In particular, if the isospectral SUSY transformation is not going to modify
the intensities of the two singularities at x = 0, π/2, then we will have to apply a confluent
transformation involving as seed a physical eigenfunction of the trigonometric Pöschl–Teller
Hamiltonian (see equation (3.43)). A similar discussion could be elaborated for the other
cases having several possibilities to achieve the same final spectrum. Our general conclusion
is that the supersymmetric quantum mechanics is a powerful mathematical tool for designing
potentials with an arbitrarily prescribed spectrum.
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